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I. Introduction 

 
The Naval Research Laboratory at Stennis 

Space Center, MS is developing a terrain-based 
navigation system that uses multibeam bathymetry to 
estimate the position of an autonomous underwater 
vessel (AUV).  A maximum likelihood approach is 
used to find the most likely position of the vessel based 
upon the vehicle’s last estimated position, its current 
measured ocean depth and a bathymetry map of the 
area [1].  The bathymetry point from the map that most 
closely matches the vessel measured ocean depth is 
used as the estimate of the vessel’s position.   

A parameterized model is needed to quantify 
the lower bound on the estimated position error for the 
terrain-based navigation system being developed.  The 
current research is concerned with the characterization 
of the point pattern produced by multibeam sonar 
systems and with the development of a parameterized 
model for the point-to-event distance distribution. The 
parameterized model will provide confidence intervals 
for the expected distance to the nearest bathymetry 
point from any arbitrary point and give an estimate of 
the average positioning error that would be observed if 
the system always picked the nearest bathymetry point 
from the vessel’s true location.   

The proposed model was developed by first 
testing the null hypothesis of complete spatial 
randomness on a sample bathymetric data set.  The null 
hypothesis of complete spatial randomness, the tests 
used to evaluate this null hypothesis, and the results of 
these tests are discussed in the next section.  The third 
section describes the process used to select an 
appropriate parameterized point-to-event model.  A 
two-parameter Weibull distribution was found to 
provide a reasonably good fit to the observed data.  The 
fourth section investigates the generalizability of the 
Weibull model.  The last section discusses future work 
and summarizes the findings to date.  

   
II.  Null Hypothesis Testing 

 
A. Data Description and the Null Hypothesis 
 
 The dataset used to develop the parameterized 
model was obtained from Pensacola Bay, Florida.  The 
data are not gridded and contain 29,963 (x, y, z) 

coordinate points in meters.  The x-values range from 
400m to 1100m and the y-values from 300m to 775m.  
For the current analyses, only interior regions of the 
dataset were used to avoid edge effects.  This is a valid 
restriction in that terrain-based navigation systems 
should not be used on the edge of available bathymetry 
data. 
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The (x, y) coordinate points for the multibeam 
bathymetry data produce a two-dimensional point 
pattern.  The null hypothesis of complete spatial 
randomness (CSR) assumes that a homogenous planar 
Poisson point process produced this point pattern.  The 
null hypothesis of complete spatial randomness serves 
as a dividing line for the alternatives of regularly 
spaced or clustered patterns.  Because one of the goals 
for the production of multibeam bathymetry data is to 
achieve a regular sampling of points, one would expect 
to be able to reject the null in favor of a regular 
alternative.  Under the null hypothesis, the number of 
points in any set A will have a Poisson distribution with 
mean λ.  λ is a constant which represents the intensity 
of the process.  An unbiased estimator of λ is the 
number of points in the study region divided by the area 
of the study region [2].  

There is no single definitive test of the null 
hypothesis of CSR.  There are several recommended 
methods, but formal comparative studies are few.  The 
power of the different available tests varies according to 
the type of pattern under observation [3].  Diggle [4] 
suggests that several different tests should be used to 
provide both complementary evidence for a conclusion 
and to reveal various attributes of the pattern through 
different analyses.  Three analyses were performed on 
the multibeam data.  These are the refined nearest 
neighbor analysis, a second-order analysis via the K-
function, and a point-to-event analysis.  Each of these 
analyses and their results are discussed in the remainder 
of this section. 

 
B.  Nearest Neighbor Analysis 
 
 The refined nearest neighbor analysis involves 
comparing the cumulative distribution function of all 
the nearest neighbor distances within the study area 
with the expected cdf under CSR.  Under CSR, the 
expected cdf is G(r) = 1 – exp(-λπr2 ), r ≥ 0, where r is 
the distance to the nearest neighbor.  Lambda (λ) is 
once again defined as the intensity of the process and is 
estimated by N/A where N is the number of points in 
the study area and A is the size of the study area.  The 
region 450m ≤ X ≤ 550m and 350m ≤ Y ≤ 450m was 

used for this analysis.  For this study area,  = 0.1114.  
The observed and expected cdf’s are shown in Figure 1. 
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Fig. 1.  Observed and expected nearest neighbor cumulative 
distribution functions (cdf).  The lower solid curve shows the 
cdf for the multibeam bathymetry data.  The upper dashed curve 
shows the expected cdf under CSR.   

 
 The lower cdf is that of the observed nearest 
neighbor distances for the multibeam bathymetry data 
in the study region.  The upper cdf is the expected cdf 
under the null hypothesis generated by G(r) with 

intensity .  That the observed cdf is lower than the 
expected cdf is evidence of a regular process [3].  The 
multibeam cdf lags until a radial distance of about one 
meter between events is reached.  After one meter 
between events is reached, the multibeam cdf begins to 
grow exponentially.  This suggests an inhibition 
distance of approximately one-meter between points.   
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 Figure 1 shows an empirical difference 
between the cdf for the multibeam data and the cdf 
expected under the null hypothesis.  A formal test is 
needed to determine whether the observed and expected 
cdf's differ significantly.  Second-order analysis 
provides this formal test.   
 
C.  Second-Order Analysis 
 
 Because the bathymetry data are an exhaustive 
map of all the bathymetry points within the study area, 
second-order analysis could be performed.  Second-
order analysis is the study of inter-event distances, 
where the events are mapped points.  Second-order 
analysis estimates the K-function.  The K-function is 
closely related to the second-order intensity of a 
stationary isotropic process, and for this reason, is often 
called the reduced second moment measure [5].  The 
advantages of this type of analysis are that it reveals 
spatial information at all scales of pattern and the exact 
locations of all events are used in the estimation.   

A detailed explanation of the K-function can 
be found in Cressie [5].  For a Poisson process, E(K(r)) 

= πr2, where r is distance.  For a regular process, 
Λ

K (r) 
will be less than πr2, and for a clustering process, it will 

be greater than πr2.  For simplification, the plot of 
Λ

K (r) 
for a Poisson process can be linearized by the function 

(r) = 
Λ

L
π

)(rK
Λ

Λ

, making E( (r)) = r.  This linearization 

also has the effect of stabilizing the variances [2].   
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 (r) for the multibeam bathymetry data was 
estimated in the study region 450m ≤ X  ≤ 550m and 

350m ≤ Y ≤ 450m.  Figure 2. shows (r) – r versus 
upper and lower envelopes from 100 simulations of a 

Poisson process in the study area.  (r) – r is plotted 
every 0.25 meters for 0.25 meters ≤ r ≤ 30 meters.  
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ig. 2.  2nd Order analysis results.  The dashed curve is 
Λ

L (r) – r for 
he bathymetry data.  The solid curves show the upper and lower 

nvelopes of 
Λ

L (r) – r for 100 simulated Poisson processes.  The 

xpected value of 
Λ

L (r) – r for a Poisson process is zero. 
 

Examination of Figure 2 shows that the 
athymetry data differ significantly from a Poisson 
rocess on a scale of r less than approximately 12 
eters.  This graph also reveals an inhibition distance 

f approximately one-meter, evidenced by the point at 
hich the curve's slope first becomes positive.  This is 

onsistent with the observation of an inhibition distance 
f about one-meter noted in the refined nearest 
eighbor analysis.  This inhibition distance means that 
t is unlikely for two bathymetry points to be closer than 
ne-meter to each other. 

.  Point-To-Event Distance Analysis 

The point-to-event distance analysis is related 
o the refined nearest neighbor analysis.  This analysis 
easures the distance from each of m sample points to 

he closest of the n events in the study area.  The m 
ample points are placed randomly in the study area 
ased on a jointly uniform distribution.  From these 
istances, the cumulative distribution function for the 



   

point to nearest event distances, F(r), is estimated.  
Under CSR, F(r) = 1-exp(-λπr2), where r ≥ 0 and λ is 
the number of events divided by the study area.    
 The cdf’s for the point to nearest event 
distances were estimated for five separate 50 by 50-
meter regions of the multibeam bathymetry data.  These 
cdf’s were estimated by placing 2500 points from a 
jointly uniform distribution within each of the five 
regions.  These regions, the number of multibeam 
bathymetry points per region, n, and the intensity of the 

process within each region, , are shown in Table 1. 
Λ

λ
 

 Region 
1 

Region 
2 

Region 
3 

Region 
4 

Region 
5 

n 283 275 281 280 275 
Λ

λ  0.1132 0.1100 0.1124 0.1120 0.1100 

 
Table 1.  Point-to-event distance study region parameters  

 
 The empirical cdf’s for the point to nearest 
event distances for the five separate regions are shown 
by the solid curves in Figure 3.  The expected cdf under 

CSR with λ estimated by the average ’s from the five 
regions is shown by the dashed curve. 

Λ

λ

The observed cdf’s are above the cdf expected 
under CSR.  This is once again evidence of regular 
spacing of the data [3].  The five cdf’s were not found 
to differ significantly, (k-sample Kolmogorov-Smirnov 
test, p > 0.10).   
 

 
Fig. 3.  The empirical point-to-event distance cdf's for the five 
study areas are shown by solid lines.  The dashed curve is the 
expected cdf under CSR.   

 
E. Results of Null Hypothesis Testing 
 

Based on the results of the above analyses, there 
was sufficient evidence to reject the null hypothesis of 
complete spatial randomness in favor of a regularly 
spaced alternative hypothesis. The multibeam 
bathymetry data exhibit greater regularity than that 

expected from a homogenous planar Poisson process.   
The nearest neighbor analysis and the second-order 
analysis show an inhibition distance of approximately 
one-meter.   

The results of the previous analyses show that the 
point-to-event distributions of the five study regions do 
not differ at the 0.10 level of significance.  This implies 
that one parametric model for the point-to-event 
distance could be used to fit the entire data set.  The 
next section is concerned with the development of an 
appropriate model.   

 
III.  Parameterized Model Selection 
 
 A parameterized model for the distribution of 
the point-to-event distances within the multibeam 
bathymetry data is needed to estimate the lower limit of 
the positioning error for the terrain-based navigation 
system being developed.  This parameterized 
distribution should have a lower limit of zero since 
there will be no negative distances from an arbitrary 
point to the closest bathymetric point.  Transforming 
the data from linear distances to circular areas is logical 
because as one moves outward from an arbitrary point 
in search of the nearest event, one is moving outward 
along a radius that encloses a circular region around the 
point.   

When the data are completely spatially 
random, the point-to-event distance distribution is 
exponential [5].  An exponential distribution is 
characterized by a constant hazard rate.  That is, from 
any arbitrary point, the probability of encountering an 
event is the same for all radial distances from that point.  
The multibeam data exhibits regularity and an 
inhibition distance, so a distribution with an increasing 
hazard rate is expected.  From an arbitrary point in the 
multibeam data, the chance of encountering an event 
may be low at first if the arbitrary point is within the 
inhibition distance between two points.  The observed 
regular spacing of the events ensures that as one moves 
out further and further along the radial line, the chance 
of encountering a multibeam bathymetry point 
increases.  
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The five empirical cdf's for the point-to-event 
distances that were estimated in Section 2 and shown in 
Figure 3 were used to determine an appropriate 
parametric distribution.  The first step in determining an 
appropriate model is to select a group of potential 
models.  Given that the distribution should have a lower 
bound of zero, and an increasing hazard rate, six 
standard survival distributions were selected as 
potential candidates:  the generalized gamma, the 
exponential, the Weibull, the standard gamma, the log-
normal, and the log-logistic distributions.  Typically, 
survival distributions are used to estimate time-to-
event.  These distributions were appropriate because the 

r Meters 



   

radial distance-to-event can be thought of as analogous 
to time-to-event.  The procedure Proc Lifereg in SAS 
(Statistical Analysis System) was used to determine the 
log-likelihood for each of the distributional models in 
each of the five study regions.  The log-likelihoods for 
the generalized gamma, Weibull, gamma and 
exponential distributions are shown in Table 2.  The 
log-likelihoods for the log-normal and the log-logistic 
distributions are not shown due to their lack of fit.  
Lower magnitudes correspond to better fits.  In all areas 
assessed, the generalized gamma provided the best fit 
followed by the Weibull distribution. 
 

 Region 
1 

Region 
2 

Region 
3 

Region 
4 

Region 
5 

Generalized 
Gamma -3511 -3580 -3485 -3412 -3549 

Weibull -3516 -3592 -3513 -3433 -3576 
Gamma -3528 -3604 -3534 -3458 -3594 
Exponential -3578 -3638 -3583 -3525 -3630 

 
Table 2.  Estimated log-likelihoods for each distribution type. 

   
The generalized gamma is a three-parameter 

distribution involving the gamma function and the 
incomplete gamma function.  The exponential, Weibull, 
standard gamma, and log-normal models are all special 
cases of the generalized gamma distribution.  The third 
parameter of the generalized gamma allows its hazard 
function to take on a wide variety of shapes.  The 
generalized gamma distribution will fit unless the 
hazard function has more than one peak [6].  Hazard 
function plots of the multibeam data did not reveal a 
distribution with more than one peak.  If one of the 
simpler models can be shown to fit, the generalized 
gamma is not used for three main reasons.  The pdf is 
complicated, and the parameters are difficult to 
interpret.  The computer time to estimate the 
generalized gamma is significantly longer than for the 
simpler models.  The generalized gamma has a 
reputation for convergence problems [6].  For these 
reasons, the Weibull distribution was selected as the 
potential model. 

The Weibull model is a slight modification of 
the exponential model, with the important consequence 
that the hazard rate is no longer constant.  The Weibull 
cdf incorporating the transformation to radial areas is 
given by G(r) = 1-exp(-λ(πr2)γ), r ≥ 0,  λ > 0, and  γ > 0.  
λ is a scale parameter and γ is a shape parameter.  
When γ = 1, the Weibull cdf reduces to the exponential.  
When 1 < γ < 2, which is the case for the multibeam 
point-to-event distributions, the hazard rate is 
increasing at a decreasing rate [6].  For the Weibull 
distribution given above, the expected value of r is 

given by E(r) = 




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
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Weibull probability plots are shown in Figure 
4.  The plots of the empirical distributions from the five 
study regions are shown, as well as the plot of a 
simulated Weibull distribution.   

 

 
 
Fig. 4.  Weibull probability plots for a simulated Weibull 
distribution and the empirical distributions for the 5 study areas. 

 
The method of maximum likelihood was used 

to estimate the parameters for a Weibull distribution for 
each of the five empirical cdf’s.  These estimated 
parameters and their 95% confidence intervals are 
shown in Table 3.   

 
 λ 95% CI γ 95% CI 

Region 1 0.1052 (0.1010, 
0.1095) 

1.2016 (1.1647, 
1.2385) 

Region 2 0.1118 (0.1072, 
0.1165) 

1.1715 (1.1337, 
1.2093) 

Region 3 0.1023 (0.0979, 
0.1067) 

1.2192 (1.1795, 
1.2588) 

Region 4 0.0950 (0.0910, 
0.0990) 

1.2575 (1.2184, 
1.2965) 

Region 5 0.1112 (0.1065, 
0.1159) 

1.1901 (1.1525, 
1.2276) 

 
Table 3.  Estimates of Weibull distribution parameters for the five 
study regions.   
 

To determine goodness-of-fit of the Weibull 
model, two-sample Kolmogorov-Smirnov tests were 
performed.  One thousand Weibull distributions of 2500 
observations using the estimated parameters were 
simulated for each of the five empirical cdf’s.  The 
procedure Proc NPAR1Way in SAS was used to obtain 
the maximum distance, D, between the two cdf’s.  The 
minimum D, the maximum D, and the mean of D's, for 
each of the five regions are shown in Table 4.    This 
table also contains the results of one simulated Weibull 
distribution compared to 1000 other simulated Weibull 



   

distributions with the same parameters.  The average 
maximum distance between the cdf’s suggested that the 
Weibull distribution would be an adequate 
approximation to the multibeam point-to-event 
distribution.   

 
 
 

 Weibull Region 
1 

Region 
2 

Maximum D 0.0464 0.0512 0.0600 
Minimum D 0.0100 0.0108 0.0128 
Average D 0.0242 0.0227 0.0274 

 Region 
3 

Region 
4 

Region 
5 

Maximum D 0.0696 0.0676 0.0772 
Minimum D 0.0212 0.0168 0.0136 
Average D 0.0425 0.0339 0.0363 

 
Table 4.  Range of D values and average D value for the 
empirical cdf's versus the modeled cdf's, and for the simulated 
Weibull distribution. 

 
IV.  Generalizability of the Weibull Model 

 
  To be a reliable estimate of positioning error 
for the terrain-based navigation system, the Weibull 
model needs to be generalizable to other multibeam 
data sets.  To determine under what conditions a 
Weibull model would provide adequate approximation, 
a point pattern process that replicates the multibeam 
pattern was needed.  The goal of the multibeam process 
is to produce a regular grid of points, but due to the 
nature of the process, a certain amount of noise is 
introduced.  A regular pattern of points with random 
noise introduced to each point was generated to 
replicate the multibeam pattern. 

To determine if a regular process with random 
noise adequately describes the multibeam process, 
regular patterns with noise were created by simulating 
50 by 50 meter grids of events.  The events were placed 
three meters apart to replicate the multibeam density, 
approximately 0.11 events per square meter.  A random 
amount of noise from a jointly uniform distribution (-h 
< x < h, -h < y < h, h = noise in meters) was then 
introduced to each event.  Regular patterns with noise 
equal to 1.5 meters provided the closest replication to 
the Pensacola Bay multibeam data.  The K-function 
was used to determine if the simulated process fit the 
multibeam process.  

Figure 5 shows upper and lower envelopes 
from 100 simulations of regular patterns with noise 
equal to 1.5 meters versus the linearized K-function for 
three 50 by 50 meter regions of the multibeam data.  
The fit is not perfect but close.  The multibeam data 
appears to have a slightly greater inhibition distance 
than the pattern with noise.  
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Fig. 6.  Average difference in log-likelihoods from ten point-to-event 
simulations at each noise increment.  The uppermost curve is the 
Weibull minus the exponential.  The lower curve is the generalized 
gamma minus the Weibull.  The solid line is y = 1.64 which 
represents a p-value of 0.20 for a chi-square statistic on one degree of 
freedom. 
 

V.  Conclusions and Future Work 
 

For the multibeam data set studied, the null 
hypothesis of CSR was rejected in favor of a regular 
alternative.  The average density of the multibeam 
points is approximately 1 point per 9 square meters.  
There is an inhibition distance between events of about 
1.1 meters.  The point-to-event data were adequately 
modeled by a Weibull distribution.  The parameters for 
this model can be easily and reliably estimated.  

A regular point pattern with random noise of 
1.5 meters introduced to each point was found to 
replicate the multibeam pattern under study.  The 
Weibull model was found to adequately fit the point-to-
event distribution for regular patterns with noise greater 
than or equal to 1.5 meters.  That is, when the noise was 
greater than or equal to half the average distance 
between points, the Weibull model fit.  The Weibull 
model fit significantly better than an exponential model 
until noise levels reached approximately 2.7 meters.   

Future work will involve using the Weibull 
model to estimate the lower bound on positioning error 
for the terrain-based navigation system.  The analysis of 
other multibeam data sets will be conducted to 
determine if the same regularity of pattern exists and to 
determine if the Weibull model can be generalized to 
these data sets.   
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